Midterm Solutions

1. Let G be a group and $H \triangleleft G$. State whether the following statements are true or false. Justify your answers.
(a) If H abelian and G / H is abelian, then G is abelian.
(b) If $N \triangleleft G$ and $N<H$, then $H / N \triangleleft G / N$.

Solution. (a) This statement is false. A counterexample is $D_{2 n}$, for $n \geq 3$, which is non-abelian. Note that $\langle r\rangle$ is an abelian subgroup of $D_{2 n}$ since it is cyclic, and $\langle r\rangle \triangleleft D_{2 n}$ since $\left[D_{2 n}:\langle r\rangle\right]=2$. Moreover, $D_{2 n} /\langle r\rangle \cong \mathbb{Z}_{2}$ since the only group of order 2 up to isomorphism is \mathbb{Z}_{2}), which is abelian.
(b) This statement is true. First, note that since $N \triangleleft G$, it follows that $N \triangleleft H$, and so H / N is a group. Moreover, for arbitrary $g N \in G / N$ and $h N \in H / N$, we have:

$$
\begin{aligned}
(g N)(h N)(g N)^{-1} & =\left(g h g^{-1}\right) N & & (\text { By definition of the operation in } G / N .) \\
& \in H / N, & & \text { (Since } \left.H \triangleleft G, \text { and so } g h g^{-1} \in H\right)
\end{aligned}
$$

from which the assertion follows.
2. Let G, H be finite groups such that $G \not \not H$. Provide explicit non-trivial examples for the following.
(a) A homomorphism $\varphi: G \rightarrow H$ such that $o(g)=o(\varphi(g))$, for all $g \in G$.
(b) An epimorphism $G \rightarrow H$ when G is non-abelian and H is a noncyclic abelian group.

Solution. (a) By 3.2 (vii) of the Lesson Plan any monomorphism φ would serve as an example. In particular, we can consider the monomorphism $\varphi: C_{n} \rightarrow D_{2 n}$ defined by $\varphi\left(e^{i 2 \pi k / n}\right)=r^{k}$, for $0 \leq$ $k \leq n-1$ (Verify this!).
(b) We know that $Z\left(D_{8}\right)=\left\{1, r^{2}\right\} \triangleleft D_{8}$ and $D_{8} /\left\{1, r^{2}\right\}$ is an abelian group of order 4 in which every nontrivial element is of order 2 (Verify this!). The quotient map $q: D_{8} \rightarrow D_{8} / Z\left(D_{8}\right)$ is an epimorphism by 3.3 (i) of the Lesson Plan.
3. Given a group G, consider the set $\Delta=\{(x, x): x \in G$.
(a) Show that $\Delta<G \times G$.
(b) If G is abelian, use the First Isomorphism Theorem to show that

$$
(G \times G) / \Delta \cong G
$$

Solution. (a) Given arbitrary $(g, g) \in G \times G$ and $(h, h) \in G \times G$, we have:

$$
\begin{aligned}
(g, g)(h, h)^{-1} & =(g, g)\left(h^{-1}, h^{-1}\right) & & (\text { By definition of inverse in } G \times G .) \\
& =\left(g h^{-1}, g h^{-1}\right) & & \text { (By definition of product in } G \times G .) \\
& \in \Delta, & & (\text { By definition of } \Delta)
\end{aligned}
$$

from which it follows that $\Delta<G \times G$ by the Subgroup Criterion (i.e. 1.2 (vii)) of the Lesson Plan.
(b) We consider the map $\varphi: G \times G \rightarrow G$ given by $\varphi(g, h)=g h^{-1}$, for all $(g, h) \in G \times H$.
φ is well-defined: Consider arbitrary $\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right) \in G \times G$ such that $\left(g_{1}, h_{1}\right)=\left(g_{2}, h_{2}\right)$. Then by definition of cartesian product, we have $g_{1}=g_{2}$ and $h_{1}=h_{2}$. Thus, it follows that

$$
\varphi\left(g_{1}, h_{1}\right)=g_{1} h_{1}^{-1}=g_{2} h_{2}^{-1}=\varphi\left(g_{2}, h_{2}\right),
$$

which shows that φ is well-defined.
φ is a homomorphism: For $\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right) \in G \times G$, we have:

$$
\begin{aligned}
\varphi\left(\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)\right) & =\varphi\left(g_{1} g_{2}, h_{1} h_{2}\right) & & \text { (By definition of operation in } G \times G .) \\
& =\left(g_{1} g_{2}\right)\left(h_{1} h_{2}\right)^{-1} & & \text { (By definition of } \varphi .) \\
& =g_{1} g_{2} h_{2}^{-1} h_{1}^{-1} & & \text { (Basic properties of groups.) } \\
& =\left(g_{1} h_{1}^{-1}\right)\left(g_{2} h_{2}-1\right) & & \text { (Since } G \text { is ableian.) } \\
& =\varphi\left(g_{1}, h_{1}\right) \varphi\left(g_{2}, h_{1}\right), & & \text { (By definition of } \varphi .)
\end{aligned}
$$

which shows that φ is a homomorphism.
φ is surjective: Given any $g \in G$, we have $\varphi(g, 1)=g(1)^{-1}=g$, which shows that φ is surjective.
ker φ : We claim that ker $\varphi=\Delta$. To see this, we have:

$$
\begin{aligned}
\text { ker } \varphi & =\{(g, h) \in G \times H: \varphi(g, h)=1\} & & \text { (By definition of ker .) } \\
& =\left\{(g, h) \in G \times H: g h^{-1}=1\right\} & & \text { (By definition of } \varphi .) \\
& =\{(g, h) \in G \times H: g=h\} & & \text { (Basic properties of groups.) } \\
& =\Delta, & & \text { (By definition of } \Delta .)
\end{aligned}
$$

which establishes our claim. By the First Isomorphism Theorem, we have $G \times G / \operatorname{ker} \varphi \cong \operatorname{Im} \varphi$, from which the assertion follows.
4. Consider the additive group of rationals \mathbb{Q}.
(a) Show that any cyclic subgroup of Q is of the from $x \mathbb{Z}$ for some $x \in \mathbb{Q}$.
(b) Show that a finitely generated subgroup of \mathbb{Q} is cyclic.
(c) Given an example of a non-cyclic proper subgroup of \mathbb{Q}.

Solution. (a) Let $H=\left\langle\frac{p}{q}\right\rangle$ be a cyclic subgroup of the rationals, where we assume without loss of generality that $\frac{p}{q}$ is in the reduced form (i.e $\operatorname{gcd}(|p|,|q|)=1)$. Then :

$$
\begin{aligned}
H & =\left\{\left(\frac{p}{q}\right)^{k}: k \in \mathbb{Z}\right\} & & \text { (By definition of a cyclic group.) } \\
& =\left\{ \pm \sum_{i=1}^{k} \frac{p}{q}: k \in \mathbb{N} \cup\{0\}\right\} & & \text { (By the operation in } \mathbb{Q} .) \\
& =\left\{ \pm k \frac{p}{q}: k \in \mathbb{N} \cup\{0\}\right\} & & \text { (Basic additive arithmetic.) } \\
& =\left\{ \pm k \frac{p}{q}: k \in \mathbb{Z}\right\} & & \text { (By definition of } \mathbb{Z} .) \\
& =x \mathbb{Z}, \text { where } x=\frac{p}{q}, & & \text { (By definition of } x \mathbb{Z} . \text {.) }
\end{aligned}
$$

and the assertion follows.
(b) Consider a finitely generated subgroup $H=\left\langle\left\{\frac{p_{1}}{q_{1}}, \ldots, \frac{p_{n}}{q_{n}}\right\}\right\rangle$. Since \mathbb{Q} is abelian, any $h \in H$ is of the form

$$
h=\sum_{i=1}^{r} k_{i} \frac{p_{i}}{q_{i}}, \text { where } k_{i} \in \mathbb{Z} \text {. }
$$

By simple arithmetic, it can be seen that the expression for h simplifies above to a fraction of the form $\frac{p}{q_{1} q_{2} \ldots q_{r}}$, for some $p \in \mathbb{Z}$ (Verify this!). Thus, it follows that

$$
h=\sum_{i=1}^{p} \frac{1}{q_{1} q_{2} \ldots q_{r}}=\left(\frac{1}{q_{1} q_{2} \ldots q_{r}}\right)^{p} .
$$

In other words, $h \in\left\langle\frac{1}{q_{1} q_{2} \ldots q_{r}}\right\rangle$, which shows that H is cyclic.
(c) For a fixed prime number p, consider the subset

$$
A_{p}=\left\{\frac{q}{p^{k}}: q, k \in \mathbb{Z}\right\} .
$$

For arbitrary $\frac{q_{1}}{p^{k_{1}}}, \frac{q_{2}}{p^{k_{1}}} \in \mathbb{Q}$, we have:

$$
\frac{q_{1}}{p^{k_{1}}}-\frac{q_{2}}{p^{k_{2}}}=\frac{q_{1} p^{k_{2}}-q_{2} p^{k_{1}}}{p^{k_{1}+k_{2}}} \in A_{p}
$$

which shows that $A_{p}<\mathbb{Q}$ by the Subgroup Criterion.
5. (Bonus) Show that there can exist at most two non-abelian groups of order 8 up to isomorphism.
Solution. Let G be a group of order 8 . By the Lagrange's Theorem any non-trivial element in G is of order 2,4 , or 8 . If G has an element of order 8 , then $G \cong \mathbb{Z}_{8}$, which is abelian. Thus, we have our first inference:
Inference 1. If G is non-abelian it cannot have an element of order 8 .
Suppose that every non-trivial element of G is order 2 . Then $h^{2}=1$ for every non-trivial $h \in G$, and so by Problem 1 of Quiz 1, it follows that G is abelian. So, G has to have a non-trivial element x with $o(x)=4$. It follows immediately from 1.2 (vii) that $o\left(x^{3}\right)=4$. Thus, we have second inference:
Inference 2. If G is non-abelian, then G has to have at least two elements of order 4 (namely $\left\{x, x^{3}\right\}$).
Consider a $y \in G \backslash N$. First, we show that y is distinct from the elements $y x, y x^{2}$, and $y x^{3}$. If $y x=y$, then $x=1$, which is not possible since x is nontrivial. Also, $y=y x^{2}$, then $x^{2}=1$, which again contradicts the fact that $o(x)=4$. Moroever, if $y=y x^{3}$, then $x^{3}=1$, which is again impossible since $o\left(x^{3}\right)=4$. By similar arguments, we can show that that the $y x^{i}, i \in\{1,2,3\}$ are also distinct from each other. Thus, $y x^{i}$, $i \in\{1,2,3\}$, are distinct elements that are all distinct from y. This brings our to our third inference:
Inference 3. $G=\left\{1, x, x^{2}, x^{3}, y, y x, y x^{2}, y x^{3}\right\}$, which shows that $G=$ $\langle x, y\rangle$.
We now consider the element $y x y^{-1}$. Since $\langle x\rangle \triangleleft G$, it follows that $y x y^{-1} \in\langle x\rangle$. Thus, $y x y^{-1}$ equals one of $1, x, x^{2}$, or x^{3}. Clearly $y x y^{-1} \neq 1$, for this would imply that $x=1$, which is impossible. If $y x y^{-1}=x$, then $x y=y x$, and so the map $\psi: G \rightarrow \mathbb{Z}_{4} \times \mathbb{Z}_{2}$ defined by $\psi\left(y^{i} x^{j}\right)=(j, i)$ is an isomorphism (Verify this!). This would imply that G is abelian. Moreover, $y x y^{-1} \neq x^{2}$ since $o\left(y x y^{-1}\right)=o(y)=4$ (Verify this!), but $o\left(x^{2}\right)=2$. From the preceding discussion, we have our fourth inference.
Inference 4. If G is non-abelian, then $y x y^{-1}=x^{3}=x^{-1}$.
Finally, we consider $o(y)$; it is apparent that $o(y)=2$ or 4 . First, we consider the case when $o(y)=2$. Then, we have:

$$
\begin{array}{rlrl}
(y x)^{2} & =y x y x & & \\
& =\left(y x y^{-1}\right) x \quad & & \left(\text { Since } o(y)=2, y=y^{-1} .\right) \\
& =x^{-1} x=1, \quad(\text { By Inference 4.) }
\end{array}
$$

which shows that $o(y x)=2$. By similar arguments, we can show that $o\left(y x^{2}\right)=o\left(y x^{3}\right)=2$. Thus, the map $\psi: G \rightarrow D_{8}=\langle r, s\rangle$ defined by $\psi\left(y^{i} x^{j}\right)=s^{i} r^{j}$ for $0 \leq i \leq 1$ and $0 \leq j \leq 3$ is an isomorphism. (Verify this!) This leads to the following inference:
Inference 5. A possible non-abelian group of order 8 (up to isomorphism) is D_{8}, and this possibility occurs when $o(y)=2$.
Finally, we consider the case when $o(y)=4$. Then:

$$
\begin{aligned}
(y x)^{4} & =y x y x y x y x & & \\
& =\left(y x y^{-1}\right)\left(y^{2} x\right)\left(y x y^{-1}\right)\left(y^{2} x\right) & & \text { (Basic group properties.) } \\
& =\left(x^{-1}\right)\left(y^{2} x\right) x^{-1}\left(y^{2} x\right) . & & \text { (By Inference 4.) } \\
& =x^{-1} y^{4} x . & & \text { (Basic group properties.) } \\
& =1, & & \text { (Since } o(y)=4 .)
\end{aligned}
$$

which shows that $o(y x)=4$. By similar arguments, it can be shown that $o\left(y x^{2}\right)=o\left(y x^{3}\right)=4$. Note that in this case $G \not \equiv D_{8}$ since G has five elements of order 4 , namely $\left\{x, x^{3}, y, y x^{2}, y x^{3}\right\}$, while D_{8} has only 2.

Inference 5. The only other possibility for a non-abelian group of order 8 up to isomorphism (besides D_{8}) occurs when $o(y)=4$. (Note that in this case $G \cong Q_{8}$, the group of quaternions. We will study this group further in the second half of the semester.)
Conclusion: The upshot of the arguments above is that there can be at most two non-ableian groups of order 8 up to isomorphism.

