
Midterm Solutions

1. Let G be a group and H CG. State whether the following statements
are true or false. Justify your answers.

(a) If H abelian and G/H is abelian, then G is abelian.

(b) If N CG and N < H, then H/N CG/N .

Solution. (a) This statement is false. A counterexample is D2n, for
n ≥ 3, which is non-abelian. Note that 〈r〉 is an abelian subgroup of
D2n since it is cyclic, and 〈r〉 C D2n since [D2n : 〈r〉] = 2. Moreover,
D2n/〈r〉 ∼= Z2 since the only group of order 2 up to isomorphism is Z2),
which is abelian.

(b) This statement is true. First, note that since NCG, it follows that
N C H, and so H/N is a group. Moreover, for arbitrary gN ∈ G/N
and hN ∈ H/N , we have:

(gN)(hN)(gN)−1 = (ghg−1)N (By definition of the operation in G/N.)
∈ H/N, (Since H CG, and so ghg−1 ∈ H)

from which the assertion follows.

2. Let G,H be finite groups such that G 6∼= H. Provide explicit non-trivial
examples for the following.

(a) A homomorphism ϕ : G → H such that o(g) = o(ϕ(g)), for all
g ∈ G.

(b) An epimorphism G→ H when G is non-abelian and H is a non-
cyclic abelian group.

Solution. (a) By 3.2 (vii) of the Lesson Plan any monomorphism
ϕ would serve as an example. In particular, we can consider the
monomorphism ϕ : Cn → D2n defined by ϕ(ei2πk/n) = rk, for 0 ≤
k ≤ n− 1 (Verify this!).

(b) We know that Z(D8) = {1, r2} CD8 and D8/{1, r2} is an abelian
group of order 4 in which every nontrivial element is of order 2 (Verify
this!). The quotient map q : D8 → D8/Z(D8) is an epimorphism by
3.3 (i) of the Lesson Plan.

3. Given a group G, consider the set ∆ = {(x, x) : x ∈ G.

(a) Show that ∆ < G×G.
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(b) If G is abelian, use the First Isomorphism Theorem to show that

(G×G)/∆ ∼= G

Solution. (a) Given arbitrary (g, g) ∈ G×G and (h, h) ∈ G×G, we
have:

(g, g)(h, h)−1 = (g, g)(h−1, h−1) (By definition of inverse in G×G.)
= (gh−1, gh−1) (By definition of product in G×G.)
∈ ∆, (By definition of ∆)

from which it follows that ∆ < G×G by the Subgroup Criterion (i.e.
1.2 (vii)) of the Lesson Plan.

(b) We consider the map ϕ : G×G→ G given by ϕ(g, h) = gh−1, for
all (g, h) ∈ G×H.

ϕ is well-defined: Consider arbitrary (g1, h1), (g2, h2) ∈ G × G such
that (g1, h1) = (g2, h2). Then by definition of cartesian product, we
have g1 = g2 and h1 = h2. Thus, it follows that

ϕ(g1, h1) = g1h
−1
1 = g2h

−1
2 = ϕ(g2, h2),

which shows that ϕ is well-defined.

ϕ is a homomorphism: For (g1, h1), (g2, h2) ∈ G×G, we have:

ϕ((g1, h1)(g2, h2)) = ϕ(g1g2, h1h2) (By definition of operation in G×G.)
= (g1g2)(h1h2)

−1 (By definition of ϕ.)
= g1g2h

−1
2 h−1

1 (Basic properties of groups.)
= (g1h

−1
1 )(g2h2−1) (Since G is ableian.)

= ϕ(g1, h1)ϕ(g2, h1), (By definition of ϕ.)

which shows that ϕ is a homomorphism.

ϕ is surjective: Given any g ∈ G, we have ϕ(g, 1) = g(1)−1 = g, which
shows that ϕ is surjective.

ker ϕ: We claim that ker ϕ = ∆. To see this, we have:

ker ϕ = {(g, h) ∈ G×H : ϕ(g, h) = 1} (By definition of ker .)
= {(g, h) ∈ G×H : gh−1 = 1} (By definition of ϕ.)
= {(g, h) ∈ G×H : g = h} (Basic properties of groups.)
= ∆, (By definition of ∆.)

which establishes our claim. By the First Isomorphism Theorem, we
have G×G/ ker ϕ ∼= Imϕ, from which the assertion follows.
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4. Consider the additive group of rationals Q.

(a) Show that any cyclic subgroup of Q is of the from xZ for some
x ∈ Q.

(b) Show that a finitely generated subgroup of Q is cyclic.

(c) Given an example of a non-cyclic proper subgroup of Q.

Solution. (a) Let H = 〈p
q
〉 be a cyclic subgroup of the rationals, where

we assume without loss of generality that p
q

is in the reduced form (i.e

gcd(|p|, |q|) = 1). Then :

H = {(p
q
)k : k ∈ Z} (By definition of a cyclic group.)

= {±
∑k

i=1
p
q

: k ∈ N ∪ {0}} (By the operation in Q.)
= {±k p

q
: k ∈ N ∪ {0}} (Basic additive arithmetic.)

= {±k p
q

: k ∈ Z} (By definition of Z.)
= xZ, where x = p

q
, (By definition of xZ.)

and the assertion follows.

(b) Consider a finitely generated subgroup H = 〈{p1
q1
, . . . , pn

qn
}〉. Since

Q is abelian, any h ∈ H is of the form

h =
r∑
i=1

ki
pi
qi
, where ki ∈ Z.

By simple arithmetic, it can be seen that the expression for h simplifies
above to a fraction of the form p

q1q2...qr
, for some p ∈ Z (Verify this!).

Thus, it follows that

h =

p∑
i=1

1

q1q2 . . . qr
= (

1

q1q2 . . . qr
)p.

In other words, h ∈ 〈 1
q1q2...qr

〉, which shows that H is cyclic.

(c) For a fixed prime number p, consider the subset

Ap = { q
pk

: q, k ∈ Z}.

For arbitrary q1
pk1
, q2
pk1
∈ Q, we have:

q1
pk1
− q2
pk2

=
q1p

k2 − q2pk1
pk1+k2

∈ Ap,

which shows that Ap < Q by the Subgroup Criterion.
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5. (Bonus) Show that there can exist at most two non-abelian groups of
order 8 up to isomorphism.

Solution. Let G be a group of order 8. By the Lagrange’s Theorem
any non-trivial element in G is of order 2, 4, or 8. If G has an element
of order 8, then G ∼= Z8, which is abelian. Thus, we have our first
inference:

Inference 1. If G is non-abelian it cannot have an element of order 8.

Suppose that every non-trivial element of G is order 2. Then h2 = 1 for
every non-trivial h ∈ G, and so by Problem 1 of Quiz 1, it follows that
G is abelian. So, G has to have a non-trivial element x with o(x) = 4.
It follows immediately from 1.2 (vii) that o(x3) = 4. Thus, we have
second inference:

Inference 2. If G is non-abelian, then G has to have at least two
elements of order 4 (namely {x, x3}).
Consider a y ∈ G\N . First, we show that y is distinct from the elements
yx, yx2, and yx3. If yx = y, then x = 1, which is not possible since x
is nontrivial. Also, y = yx2, then x2 = 1, which again contradicts the
fact that o(x) = 4. Moroever, if y = yx3, then x3 = 1, which is again
impossible since o(x3) = 4. By similar arguments, we can show that
that the yxi, i ∈ {1, 2, 3} are also distinct from each other. Thus, yxi,
i ∈ {1, 2, 3}, are distinct elements that are all distinct from y. This
brings our to our third inference:

Inference 3. G = {1, x, x2, x3, y, yx, yx2, yx3}, which shows that G =
〈x, y〉.
We now consider the element yxy−1. Since 〈x〉 C G, it follows that
yxy−1 ∈ 〈x〉. Thus, yxy−1 equals one of 1, x, x2, or x3. Clearly
yxy−1 6= 1, for this would imply that x = 1, which is impossible. If
yxy−1 = x, then xy = yx, and so the map ψ : G → Z4 × Z2 defined
by ψ(yixj) = (j, i) is an isomorphism (Verify this!). This would imply
that G is abelian. Moreover, yxy−1 6= x2 since o(yxy−1) = o(y) = 4
(Verify this!), but o(x2) = 2. From the preceding discussion, we have
our fourth inference.

Inference 4. If G is non-abelian, then yxy−1 = x3 = x−1.

Finally, we consider o(y); it is apparent that o(y) = 2 or 4. First, we
consider the case when o(y) = 2. Then, we have:

(yx)2 = yxyx
= (yxy−1)x (Since o(y) = 2, y = y−1.)
= x−1x = 1, (By Inference 4.)
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which shows that o(yx) = 2. By similar arguments, we can show that
o(yx2) = o(yx3) = 2. Thus, the map ψ : G → D8 = 〈r, s〉 defined by
ψ(yixj) = sirj for 0 ≤ i ≤ 1 and 0 ≤ j ≤ 3 is an isomorphism. (Verify
this!) This leads to the following inference:

Inference 5. A possible non-abelian group of order 8 (up to isomor-
phism) is D8, and this possibility occurs when o(y) = 2.

Finally, we consider the case when o(y) = 4. Then:

(yx)4 = yxyxyxyx
= (yxy−1)(y2x)(yxy−1)(y2x) (Basic group properties.)
= (x−1)(y2x)x−1(y2x). (By Inference 4.)
= x−1y4x. (Basic group properties.)
= 1, (Since o(y) = 4.)

which shows that o(yx) = 4. By similar arguments, it can be shown
that o(yx2) = o(yx3) = 4. Note that in this case G 6∼= D8 since G has
five elements of order 4, namely {x, x3, y, yx2, yx3}, while D8 has only
2.

Inference 5. The only other possibility for a non-abelian group of order
8 up to isomorphism (besides D8) occurs when o(y) = 4. (Note that in
this case G ∼= Q8, the group of quaternions. We will study this group
further in the second half of the semester.)

Conclusion: The upshot of the arguments above is that there can be
at most two non-ableian groups of order 8 up to isomorphism.
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