Midterm Solutions

1. Let G be a group and H <1 G. State whether the following statements
are true or false. Justify your answers.

(a) If H abelian and G/H is abelian, then G is abelian.
(b) If NG and N < H, then H/N < G/N.

Solution. (a) This statement is false. A counterexample is Dy, for
n > 3, which is non-abelian. Note that (r) is an abelian subgroup of
Ds,, since it is cyclic, and (r) <9 Da, since [Da, : (r)] = 2. Moreover,
Da,, /{r) = Zs since the only group of order 2 up to isomorphism is Z,),
which is abelian.

(b) This statement is true. First, note that since N <G, it follows that
N < H, and so H/N is a group. Moreover, for arbitrary gN € G/N
and hN € H/N, we have:

(gN)(hN)(gN)™' = (ghg ')N (By definition of the operation in G/N.)
€ HJ/N, (Since H <1 G, and so ghg™' € H)

from which the assertion follows.

2. Let G, H be finite groups such that G 2 H. Provide explicit non-trivial
examples for the following.

(a) A homomorphism ¢ : G — H such that o(g) = o(p(g)), for all
geaqG.

(b) An epimorphism G — H when G is non-abelian and H is a non-
cyclic abelian group.

Solution. (a) By 3.2 (vii) of the Lesson Plan any monomorphism
¢ would serve as an example. In particular, we can consider the
monomorphism ¢ : C,, — Da, defined by ¢(e?™/™) = r* for 0 <
k <n—1 (Verity this!).

(b) We know that Z(Dg) = {1,7°} < Dg and Dg/{1,r*} is an abelian
group of order 4 in which every nontrivial element is of order 2 (Verify
this!). The quotient map ¢ : Dy — Dg/Z(Dg) is an epimorphism by
3.3 (i) of the Lesson Plan.

3. Given a group G, consider the set A = {(z,z): x € G.
(a) Show that A < G x G.



(b) If G is abelian, use the First Isomorphism Theorem to show that
(GxG)A=qG

Solution. (a) Given arbitrary (g,9) € G x G and (h,h) € G x G, we
have:

(g,9)(h,R)™ = (g,9)(h™*, A7) (By definition of inverse in G x G.)
= (gh™',gh™) (By definition of product in G x G.)
€ A, (By definition of A)

from which it follows that A < G x G by the Subgroup Criterion (i.e.
1.2 (vii)) of the Lesson Plan.

(b) We consider the map ¢ : G x G — G given by ¢(g,h) = gh™!, for
all (g,h) € G x H.

¢ is well-defined: Consider arbitrary (gi,h1), (g2, h2) € G X G such
that (g1,h1) = (g2, h2). Then by definition of cartesian product, we
have g; = ¢g» and hy = hy. Thus, it follows that

@(g1,h) = gihi" = gahy' = ©(go, ho),

which shows that ¢ is well-defined.
¢ is a homomorphism: For (g1, h1), (g2, ha) € G X G, we have:
©((g1,h1)(g2,h2)) = ©(g192, h1hs) By definition of operation in G' x G.)

(
(9192)(hiho) ™ (By definition of ¢.)
g1g2hy thit (Basic properties of groups.)
(
(

(glhl_l)(gzhg—l) Since G is ableian.)
= (g1, h1)e(g2,h1), (By definition of ¢.)

which shows that ¢ is a homomorphism.

¢ is surjective: Given any g € G, we have ¢(g,1) = g(1)~! = g, which
shows that ¢ is surjective.

ker ¢: We claim that ker ¢ = A. To see this, we have:

ker o = {(9,h) € Gx H:p(g,h) =1} (By definition of ker.)
= {(9,h) eGx H:gh™' =1} (By definition of ¢.)
= {(9,h) eGXxH:g=h} (Basic properties of groups.)
= A (By definition of A.)

Y

which establishes our claim. By the First Isomorphism Theorem, we
have G x G/ ker ¢ = Im ¢, from which the assertion follows.
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4. Consider the additive group of rationals Q.

(a) Show that any cyclic subgroup of @ is of the from zZ for some
x € Q.

(b) Show that a finitely generated subgroup of Q is cyclic.

(c¢) Given an example of a non-cyclic proper subgroup of Q.
Solution. (a) Let H = <§) be a cyclic subgroup of the rationals, where
we assume without loss of generality that 2 is in the reduced form (i.e
ged(lpl, lq]) = 1). Then :

H = {( ki keZ}

{i S 1 £k eNU{0}} (By the operation in Q.)

(By definition of a cyclic group.)
(
= {£kE:k E Nu{0}} (Basic additive arithmetic.)
(
(

{£kL ke Z} By definition of Z.)
= aZ, where x = £ By definition of zZ.)

and the assertion follows.

(b) Consider a finitely generated subgroup H = ({%, e Z—:}>. Since
Q is abelian, any h € H is of the form
- pi
h = k;—, where k; € Z.
Z ai

By simple arithmetic, it can be seen that the expression for h simplifies

above to a fraction of the form _—E— for some p € Z (Verify this!).
Thus, it follows that
23 — .
4192 - C]1Q2 -qr

In other words, h € <q1q21 --)» which shows that H is cyclic.

(c) For a fixed prime number p, consider the subset
q
Ap:{—kq,kaZ}

For arbitrary q,jl, oo € Q, we have:

@@ _ o —er”
pkl pk2 - pk1+k’2 P>

which shows that A, < Q by the Subgroup Criterion.
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5. (Bonus) Show that there can exist at most two non-abelian groups of
order 8 up to isomorphism.

Solution. Let G be a group of order 8. By the Lagrange’s Theorem
any non-trivial element in G is of order 2, 4, or 8. If G has an element
of order 8, then G = Zg, which is abelian. Thus, we have our first
inference:

Inference 1. If G is non-abelian it cannot have an element of order 8.

Suppose that every non-trivial element of G is order 2. Then h? = 1 for
every non-trivial h € G, and so by Problem 1 of Quiz 1, it follows that
G is abelian. So, G has to have a non-trivial element z with o(z) = 4.
It follows immediately from 1.2 (vii) that o(2®) = 4. Thus, we have
second inference:

Inference 2. If G is non-abelian, then G has to have at least two
elements of order 4 (namely {x,2%}).

Consider ay € G\ N. First, we show that y is distinct from the elements
yx, yr?, and ya®. If yx = y, then & = 1, which is not possible since x
is nontrivial. Also, y = yx?, then 22 = 1, which again contradicts the
fact that o(z) = 4. Moroever, if y = y2?3, then 2® = 1, which is again
impossible since o(x®) = 4. By similar arguments, we can show that
that the ya', i € {1,2,3} are also distinct from each other. Thus, yz?,
i € {1,2,3}, are distinct elements that are all distinct from y. This
brings our to our third inference:

Inference 3. G = {1,x,2% 23y, yz,yx?® yx3}, which shows that G =
(z,y).

We now consider the element yzy~'. Since (x) < G, it follows that
yry~ ' € (x). Thus, yzy~' equals one of 1, z, 22, or z°. Clearly
yry~ ! # 1, for this would imply that x = 1, which is impossible. If
yry ' = x, then zy = yx, and so the map ¥ : G — Z, X Zy defined
by ¥(y'z’) = (j,4) is an isomorphism (Verify this!). This would imply
that G is abelian. Moreover, yzy~! # 22 since o(yzy™') = o(y) = 4
(Verify this!), but o(z?) = 2. From the preceding discussion, we have
our fourth inference.

Inference 4. If G is non-abelian, then yzy ! = 2% = 271
Finally, we consider o(y); it is apparent that o(y) = 2 or 4. First, we

consider the case when o(y) = 2. Then, we have:

(yz)* = yryx
= (yzy )z (Since o(y) =2,y =y~ ")
= z 'z =1, (By Inference 4.)



which shows that o(yz) = 2. By similar arguments, we can show that
o(yz?) = o(yx3) = 2. Thus, the map ¢ : G — Dg = (r,s) defined by
Y(y'z?) = srf for 0 <i <1 and 0 < j < 3 is an isomorphism. (Verify
this!) This leads to the following inference:

Inference 5. A possible non-abelian group of order 8 (up to isomor-
phism) is Dg, and this possibility occurs when o(y) = 2.

Finally, we consider the case when o(y) = 4. Then:

(yx)* = yryryrys
= (ymyil)( z)(yxy~1)(y*xr) (Basic group properties.)
= (:v )(y r)x 1 (y3x). (By Inference 4.)
= 't (Basic group properties.)
=1 (Since o(y) = 4.)

Y

which shows that o(yz) = 4. By similar arguments, it can be shown
that o(yz?) = o(yz®) = 4. Note that in this case G % Dg since G has
five elements of order 4, namely {z, 23, y, yx?, yz3}, while Dg has only
2.

Inference 5. The only other possibility for a non-abelian group of order
8 up to isomorphism (besides Dg) occurs when o(y) = 4. (Note that in
this case G = Qg, the group of quaternions. We will study this group
further in the second half of the semester.)

Conclusion: The upshot of the arguments above is that there can be
at most two non-ableian groups of order 8 up to isomorphism.



